

Experimental Laser Flux Imaging System

Test of an innovative method in the underwater cave system of Tulum/Mexico

Contents

- Research context
- Problem statement
- Basic idea and set-up
- Modules and calibration
- Data (turbulences, interferences)
- Data processing
- Results and conclusion

 time series, velocity fields
 statistics
- Conclusion and next steps

Research Context: Project Xibalba

A) Study on structure, dynamics and development of the Ox Bel Ha karst conduit system with innovative numerical methods (University of Neuchatel)

B) Capturing relevant parameters/data with standard and innovative methods (University of Neuchatel, Geological survey of Austria, Amigos de Sian Ka'an):

Conduit geometry: - Exploration diver surveys (dead reckoning) - Geophysics (airborne EM, ERT, borehole, GPR) - 3d laser scanning underwater

Water heads, tidal wave penetration:

- GPS

- Piezometry

Water chemistry: - on site analysis, laboratory analysis

Velocity measurements:

- Tracer tests

- Experimental Flux Imaging system

SURVEY AREA

Arnulf Schiller, Alejandro Lopez Tamayo

arnulf.schiller@geologie.ac.at

TESTING SITE

03/09/2016

Cenote Jailhouse - the Xibalba survey area for geometry and flux test measurements

PROBLEM STATEMENT

- Acquisition of velocity data as input for numerical hydromodel
- Exact measurment of very low velocities < 2 cm/s (expensive)
- Non interfering => optical / laser method
- Long time logging => secure and robust set up
- Study of temporal and spatial variation => aerial measurement

TESTING SITE - DETAIL

~ 50 meters south of Cenote Jailhouse

Water depth of conduit: 9 to 11 meters

Red arrow: main current direction

Interupted line: axis of measurement system.

Positioned in fresh water top layer

50 m

BASIC IDEA AND SET UP

COMPONENTS OF SET-UP

Recording time: Recording interval: 2 minutes 1h 58 minutes

Arnulf Schiller, Alejandro Lopez Tamayo

arnulf.schiller@geologie.ac.at

9

CAMERA UNIT

Skizze UW-Gehäuse M 1:2 aus Rohr 70/80 mit Flansch, Deckel und O-Ring-Nut auf beiden Seiten 350 Detail Laserbereich (Oberfläche schützen) в A 00 00 00 ~ -8×45 Detail - Nut für O-Ring Ansicht A = B M 1:1 3,2 e80

CCD-Sensor:

Pixel:

Typ: Resolution

Sensitivity:

Shutter:

1/2" CCD Sensor 752(H) x 582(V) Pixel / CCIR CCIR > 570 TVL (Center) 0.000005lx. F1.4 (Shutter: x256, AGC: HIGH. v : 0.35)

03/09/2016

Elek. – 1/50 ~ 1/100.000 sec. 1/60; 1/100 Sek; 1/50, 1/120 Sek.; 1/250, 1/500, 1/1000, 1/2000, 1/5000, 1/10000 sec.

AGC:

AN: LOW: 6-30dB / MID: 6-34.5dB / HIGH: 6-41dB; AUS: 6-41dB (1dB step) -10°C ~ + 50°C

ower:

Size (HxBxT):

Wight: Mount: DC+12V +/-10% mit 115 mA. 34 x 34 x 45,5 (zzgl. Stecker 13) mm. 83 g. CS

LASER HEAD

CALIBRATION / MAPPING

Real co-ordinates $(x,y) = (f(px, a,b, \alpha, \beta, \theta), f(py, a,b, \alpha, \beta, \theta))$ px,py: pixel co-ordinates.

Realised as 2d-look up table with linear interpolation.

Maximum measurement area: trapez with base line 2m, top line 1m, height 1.5 m = 2.25 qm.

RAW DATA

- Sample Screen shots ds=1.2 cm

t1=0.595

t4=4.481

t5=5.955

RAW DATA - RECORDS

14

INTERFERING PHENOMENA - STYGIOBIONTS

🛓 GrabberVideo_20130105_030846 - schrimps 46s.ts 💻 🗖							×
Medier	<u>W</u> iedergabe	<u>A</u> udio	Video	<u>U</u> ntertitel	W <u>e</u> rkzeuge	<u>A</u> nsicht	<u>H</u> ilfe
00:42	-						01:55
	844	11		¢ X		()) 100%	
GrabberVideo_20130105_030846 - schrimps 46s.ts 1.00x 00:42/01:5							1:55 ,

Right: Niphargus ictus (<u>http://en.wikipedia.org/wiki/Niphargus</u>)

Left: Proasellus cavaticus (http://www.karstforschung.at/H%F6hlenfauna.htm).

HOW TO TELL IT THE COMPUTER? - DATA PROCESSING

- 1) Frames of a record stored into 3d-array
- 2) Background reduction
- 3) Projection of 3d array along time axis (sum of frames) => identification of traces, calulation of mask.
- 4) Blanking data not identified as traces
- 5) twofold projection of filtered traces along frame axis => peak series
- 6) Analysis of peak series => frame intervals => time intervals
 => normal velocity-component.

7) Done for several traces: spatial and temporal distribution of normal velocity component as input for flux calculation.

Data Processing at an example

Particle enhancement

Searching traces

Finding peak series

Deriving velocities

STATISTICS WITHIN ON RECORD

Example: Record GrabberVideo_20130421_093724, 41 traces analysed mean velocity: 1.8287 cm/s

Standard deviation: 0.7090 cm/s - due to turbulences!

NORMAL VELOCITY DISTRIBUTION IN PIXEL DOMAIN

ру

рх

SUPPORTING METHOD FOR FLUX MEASURMENT: LASER SCAN OF TOTAL CROSS SECTION

,Cave Scanner'

Laser scan image data

Mapped into true dimension

Area of total cross section: 11.625 m³

Arnulf Schiller, Alejandro Lopez Tamayo

arnulf.schiller@geologie.ac.at

TRUE SCALE NORMAL VELOCITY FIELD AND FLUX ESTIMATION

RESULTS - SHORT TERM SERIES SERIES

Normal component of velocity over day/time cm/s over day start 26.05.2015 time interval: 2 hours.

Short term variations - detail

Arnulf Schiller, Alejandro Lopez Tamayo

arnulf.schiller@geologie.ac.at

RESULTS - SHORT TERM SERIES SERIES

Normal component of velocity over day/time cm/s over day time interval: 1 day

CONCLUSION

- Slow turbulences imagable complex temporal/spatial velocity field
- Improved flux estimation
- Variations with periods T < 0.5 days, amplitude 0.25-0.5 mm/s
- Superior resolution of low velocities
- Clear water/ darkness required

Next Steps:

- Improving full automatic image processing
- Data reduction on site
- Extension to wider area
- Artificial particle generation (electrolysis bubbles)
- Full autonomous system (under water battery)

Gracias

03/09/2016

to Leopoldo Pellon (divings unlimited), Jaime, Alvaro, Bil Phillips (speleotech.com), and Toby, Sr. Nebi (land owner), Axa Maqueda Estrada, Martin Hendricks, Jim Coke, Simon Richards,

- and to the audience

Arnulf Schiller, Alejandro Lopez Tamayo

arnulf.schiller@geologie.ac.at

25

